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A NONPERTURBATIVE MICROSCOPIC THEORY OF
HAMILTONIAN LATTICE GAUGE SYSTEMS

R.F. Bishop, N.J. Davidson, and Y. Xian

Department of Mathematics, UMIST
(University of Manchester Institute of Science and Technology)
P.O. Box 88, Manchester M60 lQD, UK

INTRODUCTION

Lattice gauge field theory was first developed by Wilson! in Euclidean space-time to
tackle the problem of quark confinement for the strong interaction. Independently, the
equivalent Hamiltonian models were formulated by Kogut and Susskind.! The lattice
supplies an ultra-violet cut-off which regularizes the divergency often encountered in
continuum field theory. One of the key advantages of lattice gauge theory clearly lies
in the fact that the confining strong-coupling limit provides a natural basis from which
one can apply such techniques as perturbation theory and other many-body theory
approximations. The fact that the physical continuum limit is achieved in the weak-
coupling limit provides a stringent test for any technique applied to lattice gauge theory.

There is a general theorem which states that all lattice gauge models possess a
nonzero confining region in which the strong-coupling perturbation theory is valid." In
other words, the strong-coupling perturbation series of all lattice gauge models have
a finite radius of convergence. One challenge in lattice gauge theory is to extend the
strong-coupling results to the weak-coupling regime. Methods based on Pade approx-
imants and similar techniques are often used for this purpose." However, this rather
ad hoc approach requires a prior knowledge of the weak-coupling limit. Among many
other techniques, including finite size calculations," renormalization group methods," i-
expansion techniques/ and loop calculus.P etc., the numerical Monte Carlo simulations"
seem provide the most reliable results, although the method is computationally in-
tensive in practice. Recently, several attempts have been made to apply powerful
many-body theories to Hamiltonian lattice gauge systems. Two such applications in-
clude the method of correlated basis functions (CBF)lO and the coupled-cluster method
(CCM),ll,12 both of which provide intrinsically nonperturbative results.

In this article, we review our recent progress in the application of the CCM to the
vacuum state of the U(l) lattice gauge theory in 1 + 1, 2 + 1 and 3 + 1 dimensions
(referred to as lD, 2D, and 3D respectively). The ID model consists of a linear array
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of plaquettes, while the 2D and 3D models are based on the square and cubic lattices
respectively. In particular, we have formulated the lattice gauge Hamiltonian in terms
of a many-body theory and applied several well-tested approximation schemes within
the framework of the CCM. These approximation schemes of the CCM have been
developed by us for quantum spin lattice systems and have met with considerable
success.P Not only are they able to produce results for quantum spin lattice models
with accuracy comparable to that of the best Monte Carlo calculations, but they also
enable us to study the possible quantum phase transitions of the systems in a systematic
and unbiased manner.l" This second ability of the CCM may prove especially significant
here since lattice gauge systems may experience a deconfining phase transition as the
coupling parameter varies from strong to weak. We notice that the 3D U(l) gauge
lattice model must recover a deconfined continuum QED in the weak coupling limit.
However, it is widely believed that the confining phase persists for all couplings for the
U(l) models in 1D and 2D, and for the SU(2) and SU(3) models in less than three
spatial dimensions.P

The rest of our article is organized as follows. In Sec. 2 we first discuss the number of
independent degrees of freedom for the U(l) lattice models in the pure gauge sector, and
then transform the gauge invariant Hamiltonian into a many-body Hamiltonian. We
present the results for the ground-state energy as a function of the coupling parameter
for the U(l) models in ID and 2D in Sec. 3, and the results of the 3D model in Sec. 4.
We conclude our article with a discussion in Sec. 5.

THE V(l) MODELS AND THEIR DEGREES OF FREEDOM

In lattice gauge models, the physical fields are defined on the directed links {l} of
the lattice. In particular, the Abelian U(l) lattice Hamiltonian after suitable scaling
can be written as2•11

N, 1 Np

H = 2: 2E? +). 2:(1 - cos Bp),
1=1 p=l

where the link index l runs over all NI links of the lattice, the plaquette index p
over all Np elementary lattice plaquettes, and ). is the coupling constant, with ). = 0
being referred to as the strong-coupling limit and), --+ 00 as the weak-coupling limit.
Clearly, we shall be interested in the bulk (thermodynamic) limit, where NI, Np --+ 00.

If N, is the number of lattice sites, it is easy to see that in the bulk limit we have
N, = 3Np, N, = 2Np in 1D; NI = 2Np, N. = Np in 2D; and NI = Np, N, = Np/3 in 3D.
The electric field EI is defined on the link l, while the magnetic field Bp is a plaquette
variable, given by the lattice curl of the link-variable vector potential Al as

(1)

(2)

with the four links, lI, [2, [3 and [4, enclosing an elementary square plaquette p in the
counter-clockwise direction. The direction of the magnetic field B, can be defined by
the right-hand rule around the plaquette. The quantization of the fields is given by the
commutator,

[AI, EI'J = ioll'. (3)

If we choose the representation, EI = -ia/aAt, the Hamiltonian of Eq. (1) becomes

(4)
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where the compact variable Al is restricted to the region -7r < Al :::; tt . The inner
product between states 1\l1({AI})) and I~({AI})) is defined as:

(~I\l1)A = g (J~~~l)~*( {AI} )\l1({AI}). (5)

It is useful to denote each link I by both a lattice site vector n and an index 0:

indicating direction, 0: = ±x, ±y, ±z, so that E/ == E,,(n), for example. By definition,
one has E_x( n) = -Ex( n - x), etc., where x is a unit lattice vector in the -l-z-direction.
Similar definitions hold for the vector potential A,,(n). The lattice divergence of the
electric field on a site n can now be written as

(\7 . E)(n) = L E,,(n)i (6)

where the summation is over 0: = ±x, ±y, ±z. A gauge transformation of any operator,
such as the vect(~r potential Ax(n), is given by

exp [it ¢(m)(\7. E)(m)] x

Ax(n) exp [-i t ¢(m)(\7· E)(m)] = Ax(n) + ¢(n) - ¢(n + x), (7)

where N, is the total number of lattice sites and ¢(m) is an arbitrary gauge function.
Clearly, the plaquette variable Bp is invariant under this gauge transformation according
to the definition of Eq. (2). It is also easy to show that the Hamiltonian of Eq. (4) is
invariant under this gauge transformation, as expected.

One can also define the divergence of the plaquette variable Bp on a lattice site n.
Clearly, this divergence is zero in 1D and 2D because the plaquette direction (i.e., unit
vector perpendicular to the plaquette with the right-hand rule) is a constant. In 3D, the
plaquette direction varies from plaquette to plaquette. We associate an elementary cube
with each lattice site n, with n at the origin of the cube in Cartesian coordinates, and
denote the six plaquette variables as B{3(n) with plaquette direction f3 = ±x, ±y, ±z,
where for example, f3 = z represents the bottom plaquette of the cube, f3 = -z the top
plaquette of the cube, etc. For later purposes, we refer to the three plaquettes B{3(n)
with (J = x, y, z as positive plaquettes with respect to the cube at n, and the other
three with (J = -x, -y, -z as negative. By definition, for the negative plaquette, one
has B_z(n) = -Bz(n + i), etc. The divergence of the plaquette variable at lattice site
n can then be clearly written as

(\7 . B)(n) = - L B{3(n),
{3

(8)

with summation over (J = ±x, ±y, ±z. We notice that upon substitution of Eq. (2),
Eq. (8) yields constant zero, as required by the Bianchi identity, namely

(\7 . B)(n) = 0, 'in. (9)

We now discuss the number of independent degrees of freedom. Since we are working
with the pure gauge Hamiltonians, we restrict ourselves to the gauge-invariant (vacuum)
sector of Hilbert space. We therefore require that any state 1\l1) satisfies

(\7. E)(n)I\l1)= 0, 'in. (10)
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This imposes Ns restrictions on the NI vector potential variables {AI}, where N, is the
number of lattice sites. Therefore, the number of independent variables for U(l) lattice
models in the vacuum sector is reduced to N = NI - Ns. We also note that if the
wavefunction 1lt is written as a function of plaquette variables, namely 1lt = w( {Bp}),
Eq. (10) is satisfied.

It is easy to see that for the infinite lattice in 1D and 2D, N = Np, namely, the
number of independent degrees of freedom is equal to the number of plaquette variables.
Therefore, it is proper and convenient to employ the plaquette variables {Bp} for the
1p and 2D models. The corresponding inner product between two states Iw({Bp}) and
11lt({Bp})) is then defined by integrals over all plaquette variables,

(11)

For the infinite 3D lattice model, however, one has that N = 2Np/3. If one is to
employ the plaquette variables {Bp} in taking the inner products as discussed above for
the 1D and 2D models, one still has to satisfy the N, (= Np/3) geometrical constraints
of the Bianchi identity, Eq. (9). In general, these restrictions are quite difficult to apply.
It is therefore more convenient to employ the NI (= Np) link variables {AI} for the 3D
model when taking the inner products, as defined by Eq. (5). The gauge invariance
constraint of Eq. (10) are then automatically satisfied so long as the wavefunctions are
completely expressible in terms of plaquette variables {Bp}. Since we are dealing with
compact lattice gauge theory (i.e., -11" < Al S 11"), the redundant degrees of freedom in
{AI} have no effect on evaluating expectation values with normalized wavefunctions.

The conclusion of the above discussion is that when taking inner products, we shall
employ plaquette variables {Bp} for the 1D and 2D models, and employ link variables
{AI} for the 3D case; but the wavefunctions of all models should always be expressible
in terms of the plaquette variables alone. Therefore, it is convenient to transform the
Hamiltonian of Eq. (4) into a form in which only plaquette variables appear. By using
the linear relation of Eq. (2), this can be easily done. We thus derive

(12)

where P is the nearest-neighbour plaquette index, the summation over it runs over all
z nearest-neighbours plaquettes, and where we have employed the notation

(-lY={ 1, pEPllj
(-l)Pl., pEPl.,

(13)

and

(-1)P1. = {
1, if p and p + Pl. denote both positive or both negative plaquettes;
-1, otherwise.

(14)
In Eqs. (13) and (14), PII and Pl. denote nearest-neighbour parallel and perpendicular
plaquette indices respectively, and the positive or negative plaquettes have been defined
in the paragraph before Eq. (8).
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GROUND-STATE ENERGY FOR THE ID AND 2D MODELS

As discussed in Sec. 2, the proper variables for the ID and 2D U(I) models are
the plaquette variables {Bp}. The Hamiltonian of Eq. (12), for the ID and 2D cases,
reduces to

(15)

where we have dropped the parallel symbol, P = PI!, and z = 2,4 for the ID and 2D
cases respectively.

The details of our calculations for Eq. (15) have been published elsewhere.'! In
particular, we first consider the independent plaquette Hamiltonian in the strong-
coupling limit (>. = 0), Ho = -22:p d} IdB;, which has two sets of eigenstates, namely
{cos mB; m = 0,1,2, ... } with even parity and {sin mB; m = 1,2, ... } with odd parity.
The corresponding ground state is clearly a constant, which is referred to as the electric
vacuum in the literature. We take this electric vacuum state as our CCM model state
I<p)· Hence we have, I<p) = c = 1. The many-plaquette exact ground state IWg) of the
full Hamiltonian is, according to the CCM ansatz, written as

Np

IWg) = eS/<P), S = L s.,
k=1

(16)

where the correlation operator S is partitioned into k-plaquette operators {Sd. For
example, the one-plaquette operator is defined as

00 Np

S1 = LLSp(n)cosnBp;
n=1p=1

(17)

and the two-plaquette operator consists of two terms,

where the prime on the summation excludes the terms with PI = P2. We note that
the many-plaquette correlation operators Sk have a close relation to the usual Wilson
loops.l,2 For example, one can write 2cosBlcosB2 = COS(B1+ B2) + COS(B1 - B2),

which corresponds to the following relation for the Wilson loops:

Our parametrization exemplified by Eqs. (17) and (18) is clearly complete. It is also
particularly useful in view of the orthonormality of the basis. However, for the 3D
model, since we have to employ the link variables when taking inner products, this
orthonormality is in some sense lost. We shall discuss this point in the next section.
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~From the Schrodinger ground-state equation, Hlwg) = Eglwg), or e-sHesl<T» =
Egl<T», we obtain the equations for the ground-state energy Eg and the correlation coef-
ficients {Sp, SplP2, ... } by taking proper projections. In particular, the energy equation
and the one-plaquette equations can be written together as

(19)

and the two-plaquette equations consist of two sets of inner products,

(<T>Icos n1Bpi cos n2Bp2e-s Hesl<T»B
(<T>Isin nlBpl sin n2Bp2e-s Hesl<T»B

0,
0,

(20)
(21)

where nl, n2 = 1,2, ... and PI =/: P2 as before. The higher-order equations can be written
down in a similarfashion. In Eqs. (19)-(21), the notation (.. ')B implies that the inner
products are integrals over all plaquette variables {Bp}, as defined by Eq, (11).

As usual, one needs to employ a truncation scheme for the correlation operator S.
We first consider the SUB1 scheme, in which one sets Sk = 0 for all k > 1. After
an extension of the definition for the one-plaquette coefficients {Sp( n)} to include the
negative modes (negative n), and taking advantage of the lattice translational invariance
to introduce the definition, am == mSp(m), Eq. (19) can be readily written as

(22)

where m may be any integer. We note that the energy equation is given by setting
m = O. Equation (22) can in fact be transformed to the well-known Mathieu equation
corresponding to the single-body Schrodinger equation with the one-plaquette Hamil-
tonian given by the first term of Eq. (15).11 We solve these SUB1 equations numerically
by a hierarchical sub-truncation scheme, the so-called SUB1(n) scheme in which one
retains at the nth level of approximation only those coefficients am with Iml :::;n, and
sets the remainder with [rn] > n to zero. For example, in the SUBl(l) scheme, al is
the only retained coefficient. The solution is trivially obtained from Eq. (22) as

Eg = A _ ~A2. SUB1(1).s, 4'

This SUBl(l) result is in fact identical to the result obtained from second-order per-
turbation theory about the strong-coupling (A -+ 0) limit. However, the subsequent
SUBl(n) approximations with n > 1 give results far superior to those of perturbation
theory. A detailed discussion has been given in Ref. 11.

We next discuss the two-plaquette approximation, i.e., the SUB2 scheme in which
one makes the substitution S -+ SSUB2 = Sl + Sz. As defined by Eq. (18), there
are two sets of two-plaquette coefficients which are determined by Eqs. (20) and (21)
respectively. Together with the one-plaquette equations discussed above, one has three
sets of coupled equations. Since the complete SUB2 approximation is very ambitious
as a first attempt to include correlations, we employ instead the local approximation
developed by us for the spin-lattice models, namely the LSUBm scheme. We consider
just the LSUB2 scheme which includes only nearest-neighbour plaquette correlations.
Similar to the SUBl(n) scheme discussed above, we may also introduce the so-called
LSUB2( n) sub-truncation scheme in terms of the number of modes {nd kept in the
sums in Eqs. (17) and (18) by ignoring those terms in the LSUB2 correlation operator
with Lk nk > n. For example, the LSUB2(1) scheme is identical to the SUB1 (1) scheme

(23)
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2 4 6 8 10

Figure 1. Ground-state energy per plaquette for the 2D U(l) model on the square lattice in the
LSUB2(n) scheme. Also shown are the full SUBl results and the results from the nth-order
strong-coupling perturbation series, PTn.

considered previously in which only a single coefficient al is retained. In the LSUB2(2)
scheme, however, four coefficients are retained, two of them from the one-plaquette
correlations, the other two from the two-plaquette correlations.

We notice that in the strong-coupling limit (A -+ 0) the LSUB2(2) approximation
exactly reproduces the results of the corresponding perturbation series up to the fourth
order,

{

A - lA2 + .J!lLA4 + O(A6) ID·E 4 3840 "9-+
NT> A - ~A2 + ~oA4 + O(A6), 2D.

The results for the ground-state energy in the LSUB2(n) scheme up to n = 10 are
shown as functions of A in Table 1 and 2 for the ID and 2D models respectively, to-
gether with some results of nth-order strong-coupling perturbation theory, denoted as
PTn(S). We note that we have taken this opportunity to correct some minor errors in
the values cited previously in Ref. 11. We also show the results of the 2D case in Fig. l.
The corresponding ID curves behave similarly. In Table 2 we have also included the
results from the method of correlated basis functions (CBF),l0 from an analytical con-
tinuation of the strong-coupling perturbation series (HOZ),4 and from the t-expansion
calculation of Morningstar." Our LSUB2(1O) results are in good agreement with them.
One sees clearly in Fig. 1 that our LSUB2(n) results quickly converge as n increases.
It is also clear that the strong-coupling perturbation series gives very poor results for
A ~ 1.5, a value which seems to be a good estimate for its radius of convergence. Much
work in modern quantum field theory goes into attempts to continue analytically such
perturbation series as Eq. (24) outside their natural boundaries. A typical recent such
attempt" for the 2D U(I) model starts from the strong-coupling perturbation series of
Eq, (24), utilizing the known coefficients up to O(A18) as input to generalized Pade
approximants. The results of this approximation are shown in Table 2 where they are
labelled as HOZ. We should emphasize that our own LSUB2(n) approximations them-
selves represent a natural extension of perturbation theory. They may be contrasted
with the rather ad hoc approaches based on Pade and other resummation techniques,
which usually find it difficult to approach the weak-coupling limit with the correct
asymptotic form unless this is built in from the start.

It is worth mentioning that in quantum chemistry and other many-body systems,

(24)
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Table 1. Ground-state energy per plaquette at several values of A for the ID U(l)
model. Shown are the results from the CCM LSUB2(n) calculations, and from the
strong- and weak-coupling expansion series, denoted as PTm(S) (mth order) and
PT(W) respectively.

x
Method 0.5 1 2 3 4 5 6 8 10

SUBl 0.4391 0.7724 1.2430 1.5828 1.8597 2.1000 2.3156 2.6966 3.0315
LSUB2(2) 0.4389 0.7689 1.1980 1.3684 1.1115 -0.3116 -6.3126
LSUB2(3) 0.4389 0.7703 l.2319 l.5567 l.8019 1.9821 2.1017 2.1670 2.0078
LSUB2(4) 0.4389 0.7702 1.2320 1.5615 1.8243 2.0409 2.2184 2.4663 2.5844
LSUB2(6) 0.4389 0.7702 1.2322 1.5637 1.8343 2.0692 2.2798 2.6501 2.9714
LSUB2(8) 0.4389 0.7702 1.2322 1.5637 1.8345 2.0698 2.2811 2.6540 2.9796
LSUB2(1O) 0.4389 0.7702 1.2322 l.5638 l.8345 2.0700 2.2815 2.6557 2.9841
PT4(S) 0.4389 0.7732 l.3708 2.6273 5.9333 13.236 27.038 86.933
PT(W) 0.5744 0.8624 1.2697 1.5822 l.8457 2.0778 2.2877 2.6603 2.9886

the more relevant physical quantity is the so called correlation energy which is defined
as the difference between the mean-field one-body (SUBI in the present case) and the
exact ground-state energies. This correlation energy can be measured experimentally
in the cases of atoms and molecules. From Table 1 and 2 and Fig. 1, one can see that
the correlation energy within the LSUB2 approximation (i.e., the LSUB2 results minus
the SUB1 results) in the U(1) model is quite small, and much smaller than the total
energy. We suspect that this is true for lattice gauge field theories in general. This is
quite similar to the case in quantum chemistry where the correlation energy is typically
only a few percent at most of the total energy. It is clear that a powerful many-body
technique is required in order to obtain a sensible numerical value for this correlation
energy.

The perturbation series in the weak-coupling limit (,\ -t 00) is given by

Eg -t C VI _ !C2 + 0(,\-1/2)
Iv. 0 80'p

where Co = 1, 0.9833, 0.9581 in OD (i.e., one-plaquette or Mathieu problem), 1D and
2D respectively. We also show the results from this weak-coupling series in Table 1
and 2, denoted as PT(W). Although our LSUB2(n) schemes do not produce exactly
these numbers, they do give good results even for very large values of '\, as can be
seen from Table 1 and 2. From those results at large '\, we obtain, by least squares fit,
Co ~ 1.0004,0.9840,0.9677 in OD, 1D, and 2D respectively.

(25)

THE U(l) MODEL IN 3D

As discussed in Sec. 2, due to the geometrical constraints of the Bianchi identity of
Eq. (9), we have to employ the link variables {AI} instead of the plaquette variables
{Bp} when taking inner products for the 3D model. Since we are working in the gauge
invariant sector, the exact ground state IWg} should be expressible by the plaquette
variables {Bp} alone. Therefore, we still write the 3D correlation operator S and the
ground-state wavefunction IWg) in the same form as Eqs. (16)-(18) of the ID and 2D
cases. However, the inner products of Eqs. (19)-(21) should now represent integrals
over all link variables {AI}, as defined by Eq. (5), namely

(~Icos nBpe-s Hesl~)A = Egon•o; n = 0,1,2, ... , (26)
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Table 2. Ground-state energy per plaquette at several values of A for the 2D U(l)
model. Shown are the results from the CCM LSUB2(n) scheme, and from the strong-
and weak-coupling expansion series, denoted as PTm(S) (mth order) and PT(W)
respectively. Also shown are the results from other techniques as explained in the text.

A
Method 0.5 1 2 3 4 5 6 8 9

SUBl 0.4391 0.7724 1.2430 1.5828 1.8597 2.1000 2.3156 2.6966 2.8686
LSUB2(2) 0.4386 0.7652 1.1468 1.1280 0.3019 -2.833 -15.11
LSUB2(3) 0.4387 0.7681 1.2216 1.5371 1.7687 1.9265 2.0110 1.9584 1.8221
LSUB2(4) 0.4387 0.7681 1.2214 1.5428 1.7994 2.0123 2.1901 2.4585 2.5568
LSUB2(5) 0.4387 0.7681 1.2216 1.5442 1.8043 2.0237 2.2105 2.4977 2.6001
LSUB2(6) 0.4387 0.7681 1.2217 1.5453 1.8100 2.0407 2.2488 2.6207 2.7915
LSUB2(8) 0.4387 0.7681 1.2217 1.5454 1.8100 2.0404 2.2477 2.6142 2.7797
LSUB2(1O) 0.4387 0.7681 1.2217 1.5454 1.8100 2.0405 2.2480 2.6155 2.7816
CBF 0.4387 0.7677 1.2167 1.5335 1.7929 2.0201 2.2255
HOZ 1.215 1.785 2.2
PT4(S) 0.4387 0.7690 1.3042 2.2898 4.8667 10.632 21.638
PT8(S) 0.4387 0.7673 1.1358 -0.738 -20.87
Morningstar 0.7675 1.796 2.763
PT(W) 0.5627 0.8434 1.2402 1.5447 1.8015 2.0276 2.2321 2.5917 2.7596

for the energy-equation and one-plaquette equation, and

(~I cos nIB". cosn2B'P2e-SHeSI~)A 0, (27)
(~I sin nIB". sin n2B'P2e-s Hesl~)A = 0, (28)

for the two-plaquette coefficients, where as before n., n2 = 1,2, '" and PI #- P2. In the
above equations, the plaquette variables {B,,} should be substituted by Eq. (2) before
integration, and the notation (.. ')A is defined by the Eq. (5).

We again consider the LSUB2(n) scheme which has been employed in the 1D and
2D models above. For the 3D model, it is clear that we need to include the two
perpendicular nearest-neighbour plaquette configurations, as well as the two parallel
in-plane ones which are the only nearest-neighbour configurations in 1D and 2D. When
evaluating the integrals of Eqs. (26)-(28) over the link variables {At} after substitution
of Eq. (2) for all {B,,}, it is very convenient to use .exponential representations of the
trigonometric functions, namely

1 ( . . )cos x = 2" e""+ e-Ix
,

1 ( . . )sin x = 2i e'x - e-IX • (29)

We note that for the 1D and 2D cases, the integrals implicit in Eqs. (26)-(27) yield
results identical to Eqs. (19)-(21). This is not surprising because the Bianchi identity
of Eq. (9) is automatically satisfied in 1D and 2D. (However, in 3D, the two sets of
integrals yield results which differ in the two-plaquette equations.)

As to the 1D and 2D cases, we find that the LSUB2(2) scheme reproduces the 3D
strong-coupling perturbation expansion up to fourth order,

(30)

In Table 3, we show our numerical results for the ground-state energy as a function
of A for the LSUB2(n) scheme for several values of n up to n = 8. For comparison, we
have also included values obtained from the fourth-order strong-coupling perturbation
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Table 3. Ground-state energy per plaquette at several values of>. for the 3D U'(L)
model. Shown are the results from the CCM LSUB2( n) scheme, and from the strong-
and weak expansion series, denoted as PTm(S) (mth order) and PT(W) respectively.
Also shown are the results from the Monte Carlo calculations of Hamer and Aydin
(MC) in Ref. 9 and the loop calculus (LC) of Ref. 8.

A
Method 0.2 0.4 0.6 0.8 1.0 1.5 2.0 3.0 4.0

SUBl 0.1900 0.3607 0.5133 0.6498 0.7724 1.0316 1.2430 1.5828 1.8597
LSUB2(2) 0.1900 0.3600 0.5100 0.6386 0.7435 0.8232
LSUB2(3) 0.1900 0.3601 0.5105 0.6422 0.7563 0.9776 1.1316 1.3193 1.4097
LSUB2(4) 0.1900 0.3601 0.5105 0.6421 0.7561 0.9756 1.1230 1.2761 1.3027
LSUB2(5) 0.1900 0.3601 0.5105 0.6421 0.7561 0.9756 1.1227 1.2690 1.2617
LSUB2(6) 0.1900 0.3601 0.5105 0.6421 0.7561 0.9756 1.1230 1.2737 1.2885
LSUB2(8) 0.1900 0.3601 0.5105 0.6421 0.7561 0.9756 1.1230 1.2735 1.2868
MC 0.1900 0.3600 0.5115 0.6203
LC 0.1900 0.360 0.51 0.62 0.71
PT4(S) 0.1900 0.3601 0.5103 0.6410 0.7523 0.9494 1.0375 0.9398 0.6000
PT(W) 0.2768 0.4242 0.5373 0.6327 0.7167 0.8956 1.0464 1.2994 1.5126

expansion (30) and from the weak-coupling perturbation theory expression of Eq. (25)
with Co = 0.7959 as obtained from the Monte Carlo calculations of Chin, Negele, and
Koonin.P We also include values obtained by Hamer and Aydin using a Monte Carlo
method (MC),9 and by Aroca and Fort using a loop calculus (LC).8 From Table 3, we
see that the LSUB2(n) results converge very well at low values of >. (>. :S 2). They
agree well with Monte Carlo and loop calculus results for>. < 0.8. However, the scheme
seems to break down badly in the weak-coupling regime (>.> 3). This is quite different
from the results of the similar LSUB2( n) scheme in the 1D and 2D cases, where the
CCM results are still very good well into the weak-coupling regime (>. > 10). We
suspect that this difference is most likely the result of the deconfining phase transition
(probably second order) in the 3D U(l) model, which is predicted to occur at .>. ::::J 0.65.
In order to investigate this possibility, we have also calculated within the LSUB2( n)
scheme the "specific heat" which is defined as the second-order derivative of the ground-
state energy per plaquette with respect to the coupling parameterX. Unfortunately,
the specific heat results do not show any indication of a phase transition. It is clear
that the physical properties near the phase transition are beyond the present low level
approximation scheme.

CONCLUSION

In this article, we have reviewed our application of the systematic CCM approach to
U(l) lattice gauge models in various dimensions. For the 1D and 2D models, we employ
the plaquette variables {Bp} which are the natural choice for the independent variables
in these cases, but in 3D we employ the link variables {AI} due to the geometrical
constraints. Our results from a local approximation scheme reproduce the strong-
coupling expansion series up to the fourth order for all models considered. Furthermore,
the LSUB2 results for the 1D and 2D models are also quite reliable for>. well into
the weak-coupling regime. We therefore conclude that the CCM comprises, in effect, a
well-defined analytical continuation or resummation of the strong-coupling perturbation
series, within the context of a natural and consistent hierarchy.
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Preliminary work on the low-lying excitation gap (glueball mass) and on the non-
Abelian SU(2) model has also been carried out within the pure gauge sector.'! In the
same context, we believe that our above formalism also provides a systematic approach
to other interesting physical quantities such as the string tension. The generalization
of our formalism from the pure gauge sector to the charged sector can also be done in
principle by including in sums of Eq. (16) for the correlation operator S not only terms
corresponding to closed paths (Wilson loops) on the lattice, but also terms representing
open paths corresponding tubes of electric flux between staggered fermions.

The quality of the LSUB2 results for the 3D model in the weak-coupling region
().> 3), however, is quite poor. This may reflect the fact that the 3D U(I) lattice gauge
system experiences a deconfining phase transition at a critical coupling Ac. A possible
solution may be to look at improving the reference model state used in the CCM. The
electric vacuum state (constant state) which we have used is the simplest possible, and
could certainly bear improvement. One option is to consider the use of a mean-field
type state which includes only one-body correlations, but already produces much better
results in the weak-coupling regime than the electric vacuum state. Furthermore, our
past experience for quantum spin lattice systems clearly reveals that one has to go to
high-order calculations of the CCM in order to see possible phase transitions in the
quantum systems.l? We believe that similar high-order approximations should be able
to reveal the critical properties of the deconfining phase transition in the 3D model.
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